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Hit or Miss: Sensor Design via Scaled Collision Theory

Wenijun Zhang, S.M.ASCE"; Sheyda Nazarian, S.M.ASCE?; Ming Wang, M.ASCE?;
and Steve W. Cranford, M.ASCE*

Abstract: The working characteristics of targeted surface sensing systems—such as fluid velocity and concentration limits—have mostly
been explored through experimental trials. Here we develop a novel scaled collision theory to facilitate the experimental screening process in
determining the optimal system parameters specific to sensing discrete molecular or particulate targets with low concentration in a bulk fluid
system, such as biomarkers, pollutants, or explosives. A simple fluid sensor system was developed and subjected to steady-state Couette flow
to explore key parameters. Validated by 177 particle-based coarse-grain simulations, this theory indicates that the chance of successful pairing
events between molecular markers and its corresponding targets—or hits—is determined by their concentrations, binding affinity or energy,
and more importantly the flow velocity. Scaled collision theory reveals great potential to be used as a system design tool for a wide spectrum
of sensing applications, ranging from water and air quality monitoring to biomedical detection and disease diagnostics. DOI: 10.1061/
(ASCE)EM.1943-7889.0001487. © 2018 American Society of Civil Engineers.

Author keywords: Sensor interface; Fluid dynamics; Collision theory; Molecular simulation; Couette flow.

Introduction

Targeted surface sensors are analytical devices that are designed to
indicate the presence and quantity of a certain component in a bulk
fluid. Typically, active sites or catalysts on a sensor have unique
reaction proclivities with a target. Examples include platforms
for explosive detection (Engel et al. 2010; Peters et al. 2015),
DNA-decorated carbon nanotubes for breath and air monitoring
(Zhang et al. 2016), water pollutant exposure (Lefevre et al.
2012), heavy metal measurement (Jung et al. 2011), or bioassays
(Dixit and Kaushik 2012). Many such systems are currently under
development, including combinatorial sensors capable of detecting
multiple particulate types (Cao et al. 2015; Dawoud et al. 2007; Ko
et al. 2008; Lee et al. 2015). While sensors may be highly reactive
to their intended targets, their success is highly dependent on their
active environmental conditions, including target concentration,
pressure, and temperature. One key criterion is fluid behavior,
which can be potentially controlled via microfluidics (Mark
et al. 2010). With throughput processing, enhanced control of flow
conditions, and increased sensitivity of detection, microfluidic
techniques have been widely applied to a variety of environmental
aspects such as monitoring of water, air, and food quality; and de-
tection of microorganisms, biofilms, environmental pollutants, and
toxins (Cate et al. 2015; Lisowski and Zarzycki 2013; Marle and
Greenway 2005; Meredith et al. 2016; Zhao and Dong 2013).
Integrated with sensor development, microfluidic systems provide
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great advantages in a broad spectrum of molecular screening ap-
plications, such as environmental engineering, biomedical detec-
tion, point-of-care diagnostics, and explosive detection (Chu
et al. 2015; Gowers et al. 2015; Kumar et al. 2013; Yeo et al.
2011; Zhou et al. 2015) [Fig. 1(a)]. For the continuing innovation
of such sensing technologies, thorough theoretical knowledge of
active surface—fluid interaction is critical for predictive design.

The basis of such sensors lies in the continuous sampling of a
bulk fluid as it crosses an activated surface [Fig. 1(b)]. A target
molecule must contact (or be in close proximity to) an interaction
point for any detection to be recorded (depending on the reaction
mechanism)—a kind of hit-or-miss selectivity condition [Fig. 1(c)].
However, in designing such microfluidic systems, parameters like
concentrations, especially flow velocity, are typically chosen ac-
cording to the literature or experimental trial and error.

Here, we develop a predictive theory to guide the selection and
optimization of the parameters with respect of different sensing ap-
plications. The approach is based on collision theory coupled with
simple fluid flow and interaction parameters. We are effectively
looking for a detection rate, akin to kinetic chemical reaction rates,
described by the classical Arrhenius relation or collision theory, or
bond dissociation rates, encapsulated by Bell’s model. Chemical
kinetics can be loosely mapped to fluid dynamics by means of sim-
ilar interaction events. These interactions are modeled directly via a
molecular dynamics (MD) approach, with explicit fluid, particles,
and interaction sites defined, and the time history of the flow
providing the statistical sampling space. Other approaches could
provide the same results, including analytical statistical solutions
[e.g., Markov chain model (Kapral 2008)], continuum-based
(i.e., stochastic fluid dynamics) (Gompper et al. 2009), or Monte
Carlo approaches (Bialik 2011).

In each case, a chemical event occurs if the molecular energy is
sufficient to overcome the defined activation energy across a num-
ber of stochastic trials (based on, for example, molecular density for
collision theory, or molecular vibration in the case of bond break-
ing), and the current energetic conditions (e.g., temperature).
Typically, activation energy and other constants are determined
empirically, representing reaction-specific parameters difficult to
predict from ab initio threshold energies. However, such models
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Fig. 1. Scaled collision theory application and model system: (a) example application of sensor array for breath analysis; molecular biomarkers in
breath detected by active sites on an activated material platform (image by Steve W. Cranford); (b) ideal system to be modeled via MD particle-based
simulation, consisting of bulk fluid with random distribution of target markers flowing over a fixed surface (sensor) with a random distribution of
active sites; and (c) definition of particle hit or miss based on interaction energy.

have been highly successful in phenomenologically describing
reaction rates. To explore the veracity of this collision theory ap-
proach, we devise a simple fluid—surface system to systematically
explore the effects of fluid and surface properties.

Model System

The model system consisted of a two-phase fluid atop a planar
two-dimensional surface lattice. The fluid particles were defined
as either bulk or randomly distributed target particles with a set
concentration, c¢;. The fixed surface particles were also defined
as either bulk or randomly distributed anchor particles with a set
concentration, c,. Interactions between all particles replicate ideal
fluid behavior (see the “Methods” section). The fluid was then sub-
ject to steady-state Couette flow, and the number of target—anchor
pairings was determined over time (e.g., successful sensing rate).

Couette flow is typically described by the laminar flow of a vis-
cous fluid in the space between two parallel plates. Our system as-
sumed such an arrangement for the inlet of a potential sensor. It
behooves us to note that while the computational method relies
on a molecular dynamics framework, the simulations themselves
were effectively scale-free (i.e., collisions could be assumed at
the mesoscale). From a nanoscale perspective, the assumption of
Newtonian flow is a computational convenience, representing
the simplest flow case, by achieving predictable flow and velocity
at the fluid—surface interface. Planar Couette flow with no body
forces is described by the incompressible Navier-Stokes equa-
tions (Schlichting 1955), which provide a one-dimensional approx-
imation to the geometry presented. The x-component of the
velocity profile, u(y, ), is given by

u Ou
PE = M(?T)z (la)

For constant flow, Ou/dr = 0, such that u(y) is linear, and a
function of the viscosity, i, and the prescribed boundary condi-
tions. In general, Couette flow assumes no slip at the boundaries
[e.g., velocity of the fluid relative to the wall is zero at the solid—
fluid interface, or u(y) = 0]. Here, due to the prescribed Lennard-
Jones (LJ) potential, slipping is allowed. Once the flow profile fully
develops, the velocity at the interface is approximately constant
(and linearly dependent on the prescribed velocity at the upper
boundary), or
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u(y) =Ay+B (1b)

where A and B = function of viscosity, u, and related to the pre-
scribed L] interaction parameter. The upper fluid is subject to a
driving velocity, developing the necessary velocity profile (Fig. 2
and the “Methods” section).

Scaled Collision Theory

To facilitate sensor parameter selection particularly for detection
through binding reactions, we developed a nonconventional colli-
sion theory applicable to microscale fluid flow called scaled
collision theory (SCT). Collision theory, proposed independently
by Trautz (1916) and Lewis (1918), quantitatively explains how
chemical reactions occur and why reaction rates vary for different
reactions (IUPAC 1997). For molecular kinetics, it predicts a rate of
chemical reaction as follows:

— szexp( 72 2)

where 3 = steric factor; Z = collision frequency; E, = activation
energy for the reaction; and bT = thermal energy (b being
Boltzmann’s constant, and T the temperature). Collision theory
states that when suitable particles of the reactant hit each other,
a certain percentage results in chemical reaction if they have
enough energy to exceed the activation energy at the moment of
impact. Increasing the concentration (more collisions) or raising
the temperature (more collisions and higher energy) thus increases
the rate of reaction. We wish to convert the reaction rate to a sensing
rate, k, where the sensing rate is the number of detected molecular
targets per second per area of a sensor surface.

Applied to a general sensing system, we revise the key param-
eters using Eq. (2) as a basis. Our desired rate is the number of
successful target—anchor pairings, or hits, per second per area.
In this case, we have a concentration of targets in the fluid (cy, in
m~>) and a concentration of anchors on the surface (c,, in m~2). We
also have a volumetric flow of the fluid over the surface, » (m?/s).
Thus, our prefactor representing the potential pair frequency is sim-
ply Z = ¢, c,v, which results in the desired units of m~2 s~!. For the
term within the exponential in Eq. (2), we recognize that (1) the
activation energy must be overcome to result in a successful reac-
tion, and (2) increasing the thermal energy increases the energy
available, and thus increases the likelihood of reaction. Here the
circumstance is somewhat reversed—the set interaction energy,

b(T

~
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Fig. 2. Model flow conditions: (a) model boundary conditions where the top one-fifth of fluid is subject to constant velocity, surface—substrate is
fixed, and the system is allowed to equilibrate; (b) ideal developed Couette flow (linear increase) with an applied constant velocity (top two arrows) at
the top layer of the fluid; and (c) velocity profile (velocity versus height) at the end of equilibration, which depicts near-constant linear profile over

range of time steps, with finite velocity at the fluid—surface interface.

€, between target and anchor promotes hits, while the thermal or
kinetic energy must be overcome to remove the target from the bulk
flow. We further substitute the kinetic energy of the flow in place
of the temperature term (equivalent at the molecular scale). This
interpretation results in

)= - e o) 5

We maintain a unitless constant 3 to account for unsuccessful
matchings and the parameter « (units of mass) to account for fluid
and flow characteristics (e.g., fluid mass and turbulence). In order
to validate this SCT formula [Eq. (3)], we systematically explore
the target—anchor concentrations, adhesion energy, and flow veloc-
ities and the effect on sensor hits.

Methods

We implemented a coarse-grained MD technique to model fluid
flow by representing fluid as a system of spherical particles
(Padding and Briels 2002). All simulations were performed using
the open-source MD code LAMMPS (Plimpton 1995). The fluid
molecules interact with themselves and the surface particles
through the classical L] 12:6 potential. Interaction parameters
are given in the Supplemental Data. The surface, which is fixed,
was modeled by a regular triangular lattice, with anchor particles
randomly distributed. The fluid was initially arranged in a crystal-
line lattice and allowed to randomly distribute via high-temperature
diffusion until order was lost. Target particles were then randomly
distributed. Periodic conditions were implemented; the upper por-
tion of the fluid was held fixed, while the surface defined the lower
system boundary. To develop Couette flow, the top one-fifth (20%
by height) of the fluid system was selected at a prescribed set veloc-
ity, vy, in the flow direction. To ensure the simulations achieved
steady-state efficiently, the remaining free fluid was given an initial
velocity of 0.8v, and allowed to evolve over time until velocities
across the height remained near constant (see Supplemental Data),
requiring approximately 200,000 integration steps. The system was
run at a steady state for an additional 200,000 integration steps to
collect fluid—surface interaction energetics. Hits were assessed by
tracking the total interaction energy between target and anchor
particles. It was accomplished by first subtracting the energy of
anchor—anchor interaction from the total energy of anchor particles,
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and then dividing by one target—anchor pair’s interaction energy.
The average total energy was then normalized by the prescribed
interaction strength of the LJ potential (see Supplemental Data).

Results and Discussion

To explore the validity of Eq. (3), we assess the number of surface
hits as a function of (1) target—anchor concentrations (c;, ¢,),
(2) adhesion energy (¢), and (3) flow velocity (v) via a suite of
simulations.

Target—-Anchor Concentrations

In terms of concentration effect, Eq. (3) predicts a linear correlation
between the hits and either concentration, for example, the number
of hits would double when the concentration of either the targets in
the detection fluid or the anchor on the surface doubles. From a
statistical standpoint, the probability of any two pair interactions
between the fluid and surface corresponding to a target or anchor
increases with both ¢; and ¢,. We examined this assumption
through applying two series of target—anchor concentrations at
two arbitrary adhesion energies (5 and 10 kcal/mol) with a
constant velocity of 1 nm/ps. [Fig. 3(a)]. At these two different
adhesion energy conditions, doubling the target’s concentrations
or the anchor’s concentrations both doubled the number of hits,
as predicted. The variance of hit values for each system was ap-
proximately 10% of the mean, supporting the reliability of the sim-
ulation results. In effect, the c¢;c, term in Eq. (3) could easily be
reduced to a single parameter, ¢, reflective of the concentration
product (or the compound probability of a matching target—anchor
pair), as depicted in Fig. 3(b).

Adhesion Energy

Here, adhesion energy was reflective of the interaction energy be-
tween the target and anchor site, which in general can represent the
sensitivity of the sensor’s active component. One would anticipate
that increasing the energy would increase the successful hit rate.
Following the traditional approach to determine temperature
dependence in collision theory, taking the logarithm of Eq. (3)
results in
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Fig. 3. Concentration effect: (a) variation of hit rate (hits) as a function
of target concentration (c;) in fluid and anchor concentration (c¢,) on
surface, demonstrating linear proportionality as predicted by Eq. (3) for
two adhesion values (¢ = 5 and 10 kcal/mol); and (b) concentrations
reduced to single compound probability of a matching target—-anchor
pair, ¢, where ¢ = c;c,, also indicating linear proportionality.

In(k) = In(Bc crv) — av? (2) (4)
which, for set concentrations and constant velocity, results in a
linear relation with e~!. We note that as ¢ — 0, ! — o0, which
results in an exponentially decreasing hit rate. Even at zero inter-
action energy, there is a nominal change that a target is in the
proximity of an anchor site. Likewise, ¢ — oo, el >0, setting
the upper bound for successful hits (i.e., ky.x = Bcicov). More
interesting, a two-stage linear correlation was observed between
In(k) and &' for velocity of both 0.004 and 0.008 nm/fs
(0.04 and 0.08 A/fs) [Fig. 4(a)], indicating a phenomenological
regime change dependent on ¢. As adhesion energy between tar-
get and anchor increases, the attraction between these two types of
molecules becomes stronger, which affects the flow characteris-
tics and thus a higher value of o was observed when the adhesion
energy was larger than approximately 50-100 kcal/mol (depend-
ing on the flow velocity). This is on the order of the average
kinetic energy of each particle—when the surface adhesion
becomes sufficient to halt the moving particle, the rate of hits in-
creases at a higher rate.

Velocity

To probe the influence of velocity, we ran a suite of simulations
with flow speeds ranging from 0 to 100 nm/ps. There was a clear
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Fig. 4. Nonlinear effects: (a) variation of logarithm of hit rate [In(hits)]
as a function of the inverse of adhesion energy (1/¢), demonstrating
two linear regimes for two trial velocities (4 and 8 nm/ps). As the ad-
hesion energy increases, the hit rate increases, as predicted by Eq. (4).
The rate of increase is heightened approximately when ¢ exceeds the
kinetic energy of the target molecules; and (b) variation in hit rate (hits)
with variation in velocity, indicating close fit with Eq. (3) and indicat-
ing optimal flow velocity.

peak and decline in hits with respect to velocity [Fig. 4(b)].
The investigation on the effect of velocity revealed a 97.6% fitting
between simulated results and a linear-exponential equation as
expected from Eq. (4). At low velocity, a linear relationship do-
minated, whereas the negative power function embedded expo-
nential relationship began to overshadow the linear one along
the increase of velocity. Simply put, when the liquid flows faster,
the chance of hits increases; however, above a certain velocity
value the liquid moves too quickly to have opportunities to interact
with the surface. This value was called the optimal liquid flow veloc-
ity for sensing purposes. A baseline value, 3.62 hits, was observed
regardless of the applied velocity values to the system, which is be-
lieved to be a result of particles’ random Brownian motion in the
fluid (Wiener 1921). Our simulation methodology fails to depict
the decrease in hits due to decreasing velocity because the initial
fluid arrangement was over the active surface upon model initializa-
tion (theoretically, hit rate decreases to zero as flow approaches zero
because there would be no fluid to sample).

Conclusion

The findings here confirm the accuracy and reliability of our novel
scaled collision theory, providing detailed insights into the effects of
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concentration, adhesion energy, and velocity terms. It can be readily
adapted to surface sensing technologies for biomedical application,
environmental monitoring, and even explosive detection—any cir-
cumstance wherein a nominal amount of material must be detected
from a bulk fluid. The theory, illustrated by k(v) = fcicov -
exp[—a(v?/¢)] reveals that pairing a molecular target with an active
site on a surface depends linearly on concentration, exponentially on
adhesion energy, and linear-exponentially on velocity. We demon-
strated that in terms of sensor performance, faster is better, but not
too fast.

This paper presented scaled collision theory, a novel nonconven-
tional collision theory for microfluidic sensor design purpose. It can
facilitate the experimental screening process in determining the op-
timal system parameters specific for particular molecular targets.
Like most MD-based simulations, the velocities were large (exceed-
ing 100 m/s), while the accessible timescale was relatively small
(less than a nanosecond). However, unlike atomistic simulation,
the model parameters here did not represent particular material
parameters, and the LJ interactions can be considered general. While
the velocities used in the model were experimentally inaccessible,
the general proposed theory is scale-free. As such, this phenomeno-
logical theory indicates that the chance of successful pairing events
between molecular targets and its corresponding pointers, hits, can
be quantitatively predicted by their concentrations, binding affinity
and energy, and more importantly the flow velocity. For the current
case, the simplest trial conditions were utilized for our model
(Couette flow). Deviations from this ideal case can be investigated
by future studies and potentially influence the parameters v and 3 in
the derived model to account for turbulent flow, temperature effects,
and viscosity, among other factors. Clearly, experimental analyses
are needed to demonstrate the accuracy and reliability in the real
world. Thus, experimental validation is an ongoing work in tandem
with sensor development (Zhang et al. 2015a, b), which will be the
subject of a future publication. Scaled collision theory reveals great
potential to be used as a system design tool for a broad range of
sensing applications, such as water, air, and food quality monitoring,
biomedical detection, and point-of-care diagnostics.
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